сделать стартовой | в избранное | контакты | карта сайта

На главную

Ответы на школьные экзамены
По всем предметам 9 и 11 классов!

ЕГЭ 2011
Все о едином государственном экзамене 2011 года.

Мобильные шпаргалки
По всем предметам!

Готовые домашние задания
Для 10 и 11 классов!

Литература и русский язык:
- Рефераты по литературе
- Сочинения для мобильника
- Изложения (9 класс)
- Биографии писателей и поэтов
- Экзаменационные вопросы по русскому языку
- Хрестоматия по русской литературе
- Рекомендации к письменному экзамену по русскому языку и литературе (сочинение)
- Орфографии и пунктуации
- Скачать изложения
- Шпаргалка по литературе
- Шпаргалка по русскому языку

История:
- Рефераты по истории
- Доклады по знаменитым личностям
- Карты по истории России
- Шпаргалка по истории

Иностранные языки:
- Топики по английскому языку
- Топики по немецкому языку
- Англо-русский словарь
- Шпаргалка по англ. языку
- Полезные материалы

Психологическая подготовка к экзаменам

Коллекция рефератов

Полезное
- Таблица Менделеева
- Единицы измерения
- Гороскоп школьника
- Информация о ЦТ 2008











Список вопросов / Геометрия - 9 класс

Окружность, описанная около треугольника.



    Окружность называется описанной около треугольника, если она проходит через все его вершины.
    
     [П] Теорема о центре окружности, описанной около треугольника.
    
     Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон.
    
     Дано: АВС — данный треугольник; О — центр описанной около него окружности (рис. 30).
    
     Доказать: О — точка пересечения серединных перпендикуляров.
    
     ответы на экзамен
    
     Доказательство. Треугольник АОС равнобедренный: у него стороны О А и ОС равны как радиусы. Медиана OD этого треугольника одновременно является его высотой. Поэтому центр окружности лежит на прямой, перпендикулярной стороне АС и проходящей через ее середину. Точно так же доказывается, что центр окружности лежит на перпендикулярах к двум другим сторонам треугольника.
    
     Замечание. Прямую, проходящую через середину отрезка перпендикулярно к нему, часто называют серединным перпендикуляром. В связи с этим иногда говорят, что центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам треугольника.
    
     [А] Теорема об окружности, описанной около треугольника.
    
     Около любого треугольника можно описать окружность.
    
     Дано: АВС — данный треугольник; О — точка пересечения серединных перпендикуляров (рис. 31).
    
     Доказать: О — центр окружности, вписанной в АВС.
    
     Доказательство. Обозначим буквой О точку пересечения серединных перпендикуляров к его сторонам и проведем отрезки ОА, ОВ и ОС. Так как точка О равноудалена от вершин треугольника АВС, тоОА = OB — ОС. Поэтому окружность с центром О радиуса ОА проходит через все три вершины треугольника и, значит, является описанной около треугольника ABC.
    
     Замечание. Отметим, что около треугольника можно описать только одну окружность. В самом деле, допустим, что около треугольника можно описать две окружности. Тогда центр каждой окружности равноудален от вершин треугольника и, значит, совпадает с точкой О пересечения серединных перпендикуляров к сторонам треугольника, а радиус равен расстоянию от точки О до вершин треугольника. Следовательно, эти окружности совпадают. ответы на экзамен
    
    
    
    

• Перейти к списку вопросов »





Закачай шпаргалки по всем предметам в свой мобильник! Закачай школьные сочинения в свой мобильник и списывай на уроке литературы!


© 2004 - 2011, НаЭкзамен.ру. All right reserved.
По всем вопросам обращайтесь через форму обратной связи

Rambler's Top100